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Section 1
INTRODUCTION

Three dimensional flow effects playan important role in the performance

of axial-flow fans and compressors that operate at transonic speeds. The coupling

between transonic and three-dimensional effects limits the applicability of the

two-dimensional analysiL .ethods that have been in use for some years.

Under a previous contract with Calspan Corporation, AFOSR sponsored

a study of the applicability of finite-difference computational methods to
1-5

this problem. That study led to the development of a computer program which

Air Force Office of Scientific Research Contract No. F44620-24-C-0059.

1. Rae, W.J., "Nonlinear Small-Disturbance Equations for Three-Dimensional
Transonic Flow Through a Compressor Blade Row", Calspan Report No.
AB-5487-A-l, AFOSR-TR-76-1082, AD-A031234, (August 1976).

2 Rae, W.J., "Relaxation Solutions for Three-Dimensional Transonic Flow
pThrough a Compressor Blade Row, in the Nonlinear Small-Disturbance Ap-

proximation", Calspan Report No. AB-5487-A-2, AFOSR-TR-76-1081,
AD-A032553, (August 1976).

3. Rae, W.J., "Finite-Difference Calculations of Three-Dimensional Transonic
Flow Through A compressor Blade Row, Using the Small-Disturbance Non-
linear Potential Equation", pp. 228-252 of Transonic Flow Problems in
Turbomachinery, edited by T.C. Adamson and M.F. Platzer, Hemisphere
Publishing Co., Washington, D.C. (1977).

4. Rae, W.J., "Calculations of Three-Dimensional Transonic Compressor Flow-
fields by a Relaxation Method", AIAA Paper 77-199, January 1977;
published in the Journal of Energy, Vol. 1, No. 5, (September-October
1977), pp. 284-296.

5. Rae, W.J., "Computer Program for Relaxation Solutions of the Nonlinear
Small-Disturbance Equations for Transonic Flow in An Axial Compressor
Blade Row", AFOSR-TR-78-085S, AD-A053744 (April 1978).



I
used a relaxation method to solve the problem in the nonlinear small-dis-

turbance approximation. Use of this approximation facilitated the adaptation

of external-flow computational methods to the internal-flow case.

The present research program was undertaken with the aim of extending

these numerical techniques, so as to handle more fully the nonlinearity of

the problem. Thus, heavily loaded blades with large turning angles were

considered, and the simplifications of small-disturbance theory (such as

satisfaction of boundary conditions on mean-chord surfaces, neglect of trailing

vortex-sheet deformation) were not used.

This Final Technical Report contains, in Sections 2 through 7, a

summary of the significant accomplishments achieved in the performance of

the research effort.
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Section 2

OBJECTIVES

The goal of this program was to develop a numerical method for

solving the equations of inviscid flow through a compressor blade row, in an

approximation that retains the nonlinearity of the problem. Thus, blade rows

with substantial pressure ratios and turning angles were to be considered.

In addition, modifications of the flow field arising from highly deformed

trailing vortex sheets were to be included.

The choice of a numerical method was left to be determined during

the course of the investigation; the level of approximation intended for the

research was that of the Euler equations (r the full nonlinear potential

equation. In the process of developing the numerical method and associated

computer program, attention was to be given to methods for accelerating the

rate of convergence of the calculations, and to the applicability of these

methods for calculating unsteady flow patterns.

3



Section 3

FINAL STATUS OF THE RESEARCH

Details of the research done under this contract are presented in

two AFOSR Scientific Reports (see References 6 and 7). This section contains

a summary of those reports, plus other findings of the research that are not

specifically recorded elsewhere.

The problem studied here is the inviscid flow through a blade row,

assumed to be steady in a coordinate system fixed to the blades. Thus the

a- ysis applies strictly to the situation where all other blade rows are

many chord lengths away. Alternatively, for finite blade-row spacings, the

analysis yields the steady component of the flow field. No further assumptions

are made, however; the flow is fully three-dimensional and transonic, and the

numerical solution method is capable of handling arbitrary shapes of the blades,

hub, and shroud.

Since current transonic compressors operate with inlet relative Mach

numbers that range up to around 1.4, it would be acceptable to make the fur-

ther assumption of isentropic flow, and use the corresponding nonlinear poten-

tial-flow equation. At the beginning of this program, it was planned to adopt

this approximation; however, further study of the numerical techniques avail-

able at that time led to a decision to use the full Euler equations, which

would include nonisentropic flow. The principal reason for this decision was

ythat the techniques then available were restricted to two-dimensional external

flow, and the three-dimensional extensions of this work were not available at

that time. In contrast, implicit time-marching methods had already been

6. Rae, W.J., "A Computer Program for the Ives Transformation in Turbo-
machinery Cascades", Calspan Report No. 6275-A-3 (November 1980).

7. Rae, W.J., "An Application of Implicit Time Marching to Three Dimensional
Flow Through a Compressor Blade Row", Calspan Report No. 627S-A-4

(November 1980).
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8-10

published for three-dimensional, external-flow cases. Thus many details

about the solution algorithm were available, requiring a minimum number of

adaptations for the internal-flow case.

During the last year of this program, several papers were published

which contained extensions, to three dimensions, of approximate factorization
11-13

techniques for solving the nonlinear potential equation. A brief study

of these extensions was made, including an adaptation to the case of internal

flows. This work was carried up to the point of deriving the finite-dif-

ference equation and solution algorithm. However, no computer code was written

for this method, since the scope of the program did not allow the pursuit of

two parallel paths at that point. Details of the problem formulation are given

in the Appendix, however, since they may be of further interest.

8. Beam, R.M. and Warming, R.F., "An Implicit Finite-Difference Algorithm
for Hyperbolic Systems in Conservation-Law Form", Journal of Computa-
tional Physics 22 (1976) pp. 87-110.

9. Steger, J.L., "Implicit Finite Difference Simulation of Flow About
Arbitrary Geometrics With Application to Airfoils", AIAA Paper 77-665
(June 1977).

10. Kutler, P., Chakravarthy, S.R., and Lombard, C.P., "Supersonic Flow
over Ablated Nose Tips Using An Unsteady Implicit Numerical Procedure",
AIAA Paper 78-213 (January 1978).

11. Holst, T.L. and Ballhaus, W.F., "Fast Conservative Schemes for the Full
Potential Equation Applied to Transonic Flows", AIAA Journal, Vol. 17,
No. 2, (February 1979), pp. 145-152.

12. Holst, T.L. and Albert, J., "An Implicit Algorithm for the Conservative,
Transonic Full Potential Equation with Effective Rotated Differencing",
NASA nT 78570, (April 1979).

13. Holst, T.L., "A fast, Conservative Algorithm for Solving the Transonic
Full Potential Equation", AIAA Paper 79-1456, (July 1979).

K?
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The development of the Euler-equation solver requried the formula-

tion of several program elements: a means of handling the radius terms of

the cylindrical coordinate system, derivation of a normal pressure gradient

relation for use at solid boundaries, methods for enforcing the periodicity

conditions, the boundary conditions, the mass-flow constraint, and the far-

field conditions. Details about these program elements can be found in the

AFOSR Scientific Report cited earlier (Reference 7).

More important than any of these items, however, was the choice of

a grid-generation technique for transforming the flow field into a simple

computational domain. After examining a number of options, a decision was
14

made to use the conformal-transformation technique of Ives. This technique

had several advantages: first, the periodic boundaries are mapped into the

interior of the computational domain, in such a way that the periodicity

conditions on the flow field variables are satisfied automatically. Second,

the blade surfaces are mapped into two of the boundaries in the transformed

plane, while the regions at upstream and downstream infinity become a pair

of points when transformed. And thirdly, the metrics of the coordinate trans-

formation can be evaluated analytically, thus allowing accurate metric data

even when a sparse grid is being used. Accordingly, a substantial effort was

put into the development of a computer program for applying this transforma-

tion to cascades of rather arbitrary geometry. The results of this development

are given in Reference 6.

A computer program incorporating all of these elements was then pre-

pared, and was applied, on a very coarse grid, to the case of a two-dimensional

cascade, for which nonlinear-potential solutions had been calculated in a

previous effort at Calspan. The remainder of the contract period was spent

14. Ives, D.C. and Liutermoza, J.F., "Analysis of Transonic Cascade Flow
Using Conformal Mapping and Relaxation Techniques", AIAA Journal 15
(1977), pp. 647-652.

15. Rae, W.J. and Homicz, G.F., "A Rectangular-Coordin.te Method for Cal-
culating Nonlinear Transonic Potential Flowfields in Compressor Cascades",
AIAA Paper 78-248, (January 1978).

6



in debugging this program, and in making a lengthy series of modifications to

it, in an attempt to achieve stable and accurate solutions. These were not

ahcieved, due principally to singularities in the metric coefficients in the

region near the trailing edges of the blades. The conformal transformation

contains other singularities, which lie at upstream and downstream infinity;

methods were developed, that were successful in eliminating the oscillations

due to these singular points, but none of the approaches that were tried

for the trailing-edge region gave adequate improvement. Further details

about these approaches can be found in Reference 7.

Future developments of this program must start by solving the problem

of the oscillations caused by the metric singularities at the trailing edge.

It is not clear whether further modifications of the method now in use could

remove the problem. An alternative is to replace the conformal mapping with

an entirely different coordinate transformation. If that is done, certain

elements in the computer program may need revision: for example, if the new

transformation does not automatically satisfy the periodicity condition, some

changes in the solution algorithm may be required.

It must also be pointed out that there are other problems which it

was not possible to consider in depth because of the instabilities in the

computer code. Among these are the means of accounting for deformed vortex

sheets, the development of realistic far-field solutions and their coupling

to the Kutta condition, and techniques for enforcing these results numerically.

Lastly, there are opportunities for further progress with the nonlinear poten-

tial equation that should be pursued further.

1
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Section 4

PUBLICATIONS

There have been no journal publications during this reporting period.

The results of the research have been published in References 6 and 7.

9.
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Section 5

PERSONNEL

The principal investigator for this effort is Dr. William J. Rae.

He has been assisted by Drs. J. C. Erickson, Jr., John A. Lordi,

Gregory F. Homicz, and Joseph P. Nenni. On matters related to computer

programming methods, he has had the assistance of Mr. John R. Moselle.
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Section 6

INTERACTIONS

The principal investigator attended the following meetings:

1. ASME Gas Turbine Conference, London, England, April 9-13, 1978.

2. NASA Lewis Research Center, Workshop on Computational Fluid Dynamics

Applied to Turbomachinery; Cleveland, OH, November 14-15, 1978.

3. NASA Lewis Research Center, Conference "Aeropropulsion 1979";

Cleveland, OH, May 15-16, 1979.

4. Air Force Aero Propulsion Laboratory, Wright-Patterson AFB, Ohio,

for a meeting with Dr. A. Wennerstrom and Mr. M. Stibich, to discuss

the work being done on this contract (June 22, 1979).

5. AIAA Short Course: "Effective Software Development for Aerodynamic

Applications" given by W. F. Ballhaus, Jr., et al., Williamsburg,

Virginia, July 21-22, 1979.

6. AIAA Computational Fluid Dynamics Conference, Williamsburg, Virginia,

July 23-26, 1979.

Drs. James E. McCune and C. S. Tan of the MIT Gas Turbine Laboratory

visited Calspan on January 14-15, 1980 for a discussion of their work on vor-

ticity modeling, and Dr. Rae visited Dr. McCune on August 6 and 7, 1980, for

further discussion.

Dr. Rae presented a seminar entitled "Computational Studies of

Transonic Compressor Flow Fields", to the Department of Mechanical and Aero-

space Engineering, State University of New York at Buffalo, November 6, 1980.

10
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Copies of the quarterly progress reports describing the conformal

transformation technique were sent to Dr. David C. Ives (Pratt & Whitney),

Dr. Peter M. Sockol (NASA Lewis), Dr. W. Habashi (Concordia University,

Montreal, Quebec), Dr. Richard A. Novak (General Electric Company, Lynn,

Massachusetts) and to Professor Gino Moretti (Polytechnic of New York), and

a copy of the computer deck for the conformal transformation method was sent

to Dr. Sockol, Dr. Habashi, and Dr. Novak.

A copy of the computer deck from the previous AFOSR contract was

sent to Dr. David L. Whitfield (ARO, Inc., Tullahoma, Tennessee).

I



Section 7

INVENTIONS

There have been no inventions or patent disclosures stemming from

this research effort.

12



APPENDIX

VELOCITY-POTENTIAL EQUATION

At the beginning of the present effort, the full nonlinear potential

equation was envisioned as the level of approximation that would be used; but

a review of the numerical techniques then available led to the conclusion that

the Euler equations could be used more readily with the published algorithms.

In contrast, solution methods for the three-dimensional potential equation

were still under development. Accordingly, effort was devoted exclusively to

applying the implicit time-marching technique.

However, major steps toward the required three-dimensional technique

were published subsequently,1 1-13 to the extent that it became feasible to

undertake this approach. A limited study of these methods was made, including

derivation of the appropriate partial differential equations and adaptation

of the approximate-factorization algorithm to the special requirements of a

transonic blade row. The resulting formulation of the problem is given in

this Appendix. Preparation of a computer program to implement this method

was not undertaken.

Partial Differential Equations

The basic equation is the continuity equation, written in the

form:

W) (o-- 1 + T0 e - (o-N) p (A-l)

where steady flow has been assumed, and where dimensionless forms have been

defined as follows, for the cylindrical coordinates X, r, e the relative

velocity components 4 x,r,a the density and sound speed a:

.I
I.C

.13



= U00  L I 1,p,49 U. (A-2)

The constant-rothalpy relation takes the form

R = L- - 4+ -- (A3)
MJ

If a general coordinate transformation is now made:

. Cz ,p,e) , , " " EPB , ,P,) (A-4)

then the continuity equation can be written as

d- +-L (- v--L a- o Ro(A-5)

where

- i1 qp rig

U ~ + +

4z CI/ + q +

+ (A-6)4

14



These velocity components are then expressed in terms of the velocity

potential. It is convenient to subtract the uniform helical approach flow,

leaving the perturbation potential (which is not assumed to be small), i.e.:

1+-
LimLie

Wr =

/ 
=  

_r + c= + (A-7)

These velocity-potential derivatives are then expressed in the , V, ' co-

ordinates, giving:

U = PR0 +1  I s + P 4  ~ 2

V 0 2 + POr+ P2 f

W RS i4 + )9R 3( (A-8)

where the A's are combinations of the metric coefficients

Rot 9 a + 'q03 + go

' ,- *z+ , -)2 2

10
al 2 )2

p'A4  + 4 to vl +

is

- ... , . . .. .



LI

4 e (A-9)

P2

The finite-difference approximation to these equations (as developed

in Refs. 11-13) includes two notable features: first, an approximate factori-

zation of the finite-difference operator into the product of three one-

dimensional operators, and second, the use of an upwind bias in the evaluation

of the density ratio a- . The factorization of the operator is accomplished

by replacing the original operator, L , (defined below) with a second operator,

N . The operator L is defined as:

where

)0: <.CL,N P( )b,N,L - ,.-l,N,L/

r with similar definitions of 6 and . Here KNL denotes the grid-point

indices in the 5, V,and directions. The three values of T" are evaluated

with an upwind bias, by the formulas:

-%'

~K,N ) . d(t - I),. DA4 1 L K, KM04.S. L.

16
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whe re

r .for UJK±,1.y. . 0

(A-I)

t T I for W,MNL+l <

and where

(A-12)

- 1) (P K ,,N, ') " C, OJ Or U < 0

and with analogous definitions of ),, and L

The constant C is an input number between 1 and 2, of magnitude such that ).

is less than 1 everywhere.

The replacement of operator L by operator N is done by writing the

iteration process in the form:

NC (A-13)

where the superscript q denotes the iteration counter, &j is a relaxation

J factor, C is the correction to the solution:

C (A-14)

and where the operator N is chosen as the product of three one-dimensional

operators whose product closely matches the principal terms in L . For the

present problem, the appropriate adaptation of Hoist's formulas appears to be:

17



'1 -. +

S KtJL (A-15)

where a. is a constant, which takes on a sequence of values as the iterations

proceed, where the operator E+1 is defined as

Ego K, ,L X , /,,L (A-16)

and where the R's are related to the metric coefficients R ,, and R

VI3

K, N- L,

3 ) (A-17)

These operators are implemented by the following steps:

Step 1:,-,

(oL ,T,, N , ,,.,-K41fM ,L

Step 2: 1jP P, 6L )OK IV = N

Step 3:. ,-

0.' + c. , CK.,L PK,4L (A-18)

18



The sequence in which these steps are applied starts at the downstream edge

of the grid, where K = KMX. For each N and L in this plane, Step 1 is

applied, with fK X+,,mL arbitrarily set equal to zero. Next, f,MX, NL

is found by applying Step 2. Steps I and 2 are then repeated, for KMX-l,

KDC-2, and so on. After all the K-planes have updated values of f , then

Step 3 is applied, for K from 1 to KMX. Boundary values and periodicity

conditions are then applied, explicitly, after which the sequence of Steps 1-3

is repeated.

These equations must be supplemented by specific means of enforcing

the boundary, periodicity, inlet, and exit conditions.

19
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